Counting hyperelliptic curves on an Abelian surface with quasi-modular forms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Curves with Modular Forms

We consider the type IIA string compactified on the Calabi-Yau space given by a degree 12 hypersurface in the weighted projective space P(1,1,2,2,6). We express the prepotential of the low-energy effective supergravity theory in terms of a set of functions that transform covariantly under PSL(2,ZZ) modular transformations. These functions are then determined by monodromy properties, by singular...

متن کامل

Counting hyperelliptic curves

We find a closed formula for the number hyp(g) of hyperelliptic curves of genus g over a finite field k = Fq of odd characteristic. These numbers hyp(g) are expressed as a polynomial in q with integer coefficients that depend on g and the set of divisors of q − 1 and q + 1. As a by-product we obtain a closed formula for the number of self-dual curves of genus g. A hyperelliptic curve is self-du...

متن کامل

On Hyperelliptic Modular Curves over Function Fields

We prove that there are only finitely many modular curves of Delliptic sheaves over Fq(T ) which are hyperelliptic. In odd characteristic we give a complete classification of such curves.

متن کامل

Modular equations for hyperelliptic curves

We define modular equations describing the `-torsion subgroups of the Jacobian of a hyperelliptic curve. Over a finite base field, we prove factorization properties that extend the well-known results used in Atkin’s improvement of Schoof’s genus 1 point counting algorithm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Number Theory and Physics

سال: 2014

ISSN: 1931-4523,1931-4531

DOI: 10.4310/cntp.2014.v8.n2.a2